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Emerging LLM App Stack

Contextual Data Pipelines Embedding Model  __ _ _ _ _ > Vector Database
------ > (Databricks, Airflow, e (OpenAl, Cohere, > (Pinecone, Weaviate,
data Unstructured, ...) Hugging Face) Chroma, pgvector)
i A T
\ 1 L
LD vl R T
Ss ! e 1
L ’ 1
vilv v
Frompt Playground —— —> APIs/ Plugins
Few-shot — (OpenAl, nat.dev, — " (Sem, Wol g i
Humanloop) +— — (Serp, Wolfram, Zapier, ...)
examples
Orchestration
(Python/ DIY,
LangChain, / LLM APIs and Hosting )
Llamalndex, ChatGPT)
—————— > e
Query E—— LLM Cache —_— Proprietary API Open API
——  (Redis, SQLite, GPTCache) ———P (OpenAl, Anthropic) (Hugging Face, Replicate)
G —
|
! Logging/LLMops =~ "~ ’I Cloud Provider Opinionated Cloud
! (Weights & Biases, MLflow, > (AWS, GCP, (Databricks, Anyscale,
App Hosting : PromptLayer, Helicone) — Azure, Coreweave) Mosaic, Modal, Runpod, ..)
Output «+—— (Vercel, Steamship, |
Streamlit, Modal) I /
1
N s s . .
Validation

(Guardrails, Rebuff,
Guidance, LMQL)

>
>
>
>
>

LEGEND

Gray boxes show key components of the stack, with leading tools/systems listed

Arrows show the flow of data through the stack

- = = =p Contextual data provided by app developers to condition LLM outputs
—p  Prompts and few-shot examples that are sent to the LLM

———3 Queries submitted by users
——— Output returned to users
Enterprise



DIFY. A/

LLMs App Stack

Dify Architecture

83:33,‘2 P Dataset ETL . Dify RAG Pipeline > Storage
unstructured) Extract, transform, load Indexing, retrieval, evaluation... 1 Vector & relational DBs
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Dify Prompt IDE ? 4 Dify plugins
Prompts — € . >
P Complex prompting & versioning € OrChEStratlon € Workflow & agent custom actions
Studio
Dify Workflow DSL < A Dify. > Dify LLMOps
Multi-step orchestration = N ¢ s Observability, annotation...
; J H“ HH
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API/Agent Tlll Commercial LLMs
Out t I 2 5 Open-source LLMs
qipuss G App Builder Moderation SyStem ? Inference providers
Responses Filtering, risk assessment, QA... ¢ 2

———> (ontextual data —3 Prompts and examples -3 Queries / Requests ——3 Qutputs / Responses
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m Haystack

Haystack is an open source
framework for building production-
ready LLM applications, retrieval-
augmented generative

pipelines and state-of-the-art
search systems that work
intelligently over large document
collections.

Powerful Pipelines
In Haystack 2.0, pipelines are dynamic computation graphs that support:

@ Control flow: Need to run different components based on the

output of another? Not a problem with 2.0.

* 5% Loops: Implement complex behavior such as self-correcting flows
by executing parts of the graph repeatedly.

. 5% Data flow: Consume it only where you need it. Haystack 2.0 only
exposes data to components which need it - benefiting speed and
transparency.

. @ validation and type-checking: Ensures all components in your

ipeline are compatible even before running it.

. M serialization: Save and restore your pipelines from different

formats.

Do

https://haystack.deepset.ai/overview/intro

3
K = S W REST §ot

——————



https://docs.haystack.deepset.ai/v2.0/docs/pipelines
https://haystack.deepset.ai/overview/intro

Sandbox Environment

Front End Application : React)S / Tauri (Cross Platform)

‘ Rest API

DIFY Published App (Ex: Sentiment Analysis). Accessed via API

DIFY (Al Orchestrator) Ollama + Google GemmaZ2 Model

Sandbox (Linux + Docker)




Sandbox Environment

Application (FrontEnd)
Mobile/Web Application

Application (FrontEnd)
Mobile/Web Application

(Channel X) (ChannelY)

‘ Kafka
(JSON)

Dev / Testing : HopScotch (Postman Kafka / MQTT (Pub/Sub)

Collection) : APl FrontEnd.
(Windows)

$  Restanl § Restan
(JSON)

Topics and Channels

DIFY Published App (Ex: Sentiment Analysis). Accessed via API

f
.

DIFY (Al Orchestrator) Ollama + Google Gemma2 Model

Sandbox (Linux + Docker)




Phi-3.5 Small Language Model (SLM)

Phi-3.5-mini Phi-3.5-vision Phi-3.5-MoE
(3.8B) (4.2B) (6.6B active /
42B total)

Aug 215t 2024




Phi-3.5 Small Language Model (SLM)

The Phi-3.5 Mini Instruct is a compact Al model with 3.8 billion parameters. It’s designed for
efficient instruction processing and supports a 128k token context length. It excels in

environments with limited memory or computational resources. This makes it ideal for code
generation, solving math problems, and logical reasoning.

Despite its smaller size, this model achieves impressive results in multilingual and multi-turn
conversations, showcasing notable advancements over its predecessors. It performs
exceptionally well on various benchmarks, often surpassing other models of similar size, like
Llama-3.1-8B-instruct and Mistral-7B-instruct, particularly in the RepoQA benchmark, which
evaluates long-context code understanding.

Aug 215t 2024
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Phi-3.5 Small Language Model (SLM)

The Phi-3.5 MoE (Mixture of Experts) model marks a novel approach from the

company, integrating multiple specialized models into a single framework. With an
architecture supporting 42 billion parameters and a 128k token context length, it offers

@ @ @ scalable performance for complex tasks.

Ph|v3 S-mini Ph|-35~vision Ph 35 M E

However, it actively utilizes only 6.6 billion parameters. This model is tailored for
advanced reasoning tasks, including code generation, mathematical problem solving,
Aug 215t 2024 and multilingual comprehension. It frequently outperforms larger models in targeted
benchmarks, such as RepoQA, demonstrating its efficiency in specific areas.

The model has been trained on selective set of languages listed here: Arabic, Chinese, Czech,
Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, ltalian, Japanese, Korean,
Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish and Ukrainia

infimf(e






Phi-3.5 Small Language Model (SLM)

Phi-3.5 Vision Instruct rounds out the Phi-3.5 series with its ability to process both
text and images. This multimodal model excels in a variety of tasks. Tasks like image
interpretation, optical character recognition, understanding charts and tables, and
summarizing videos. It shares the 128k token context length of its Phi-3.5
counterparts, allowing it to handle intricate, multi-frame visual tasks efficiently.

Aug 215t 2024

Microsoft trained the Vision Instruct model on a mix of synthetic and carefully curated
publicly available datasets, emphasizing high-quality, data-rich reasoning
capabilities.

infimf(e‘



Phi-3.5 Small Language Model (SLM)

Phi-3.5 Quality vs Size in SLM
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Phi-3.5 Small Language Model (SLM)

Mistral- GPT-40-
Phi-3.5- Nemo-12B- Llama- mini-
MoE- instruct- 3.1-8B- Gemma- Gemini- 2024-07-

3 Yam pe|eg Category Benchmark instruct 2407 instruct 2-9b-It 1.5-Flash 18 (Chat)
P

Popular Arena Hard 37.9 39.4 25.7 42.0 55.2 75.0
aggregated

How the hell Phi-3.5 is even possible?

benchmark

BigBench Hard

Phi-3.5-3.8B (Mini) somehow beats LLaMA-3.1-8B.. .
(trained only on 3.4T tokens)

MMLU (5-shot)

MMLU-Pro (0-

Phi-3.5-16x3.8B (MoE) somehow beats Gemini-Flash
(trained only on 4.9T tokens)

shot, CoT)

Reasoning ARC Challenge
(10-shot)

Phi-3.5-V-4.2B (Vision) somehow beats GPT-40
(trained on 500B tokens)

BoolQ (2-shot)

GPQA (0-shot,
CoT)

how? ol
HellaSwag (5-

shot)

OpenBookQA

(10-shot)

https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-
multi-lingual-hi hi-3-5-slms/ba-p/4225280

l%@ 2024 Unovie Confidential



https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280

RAG or Fine-Tuning ?

infimf(e

There is a lot of confusion about when to apply which

method.
External Knowledge
Required
A
Modular RAG
Hiah Organic combination of
g { multiple modules

Low

- P —— -
\
\ . .
\ C Retriever fine-tuning )

|
I

Advanced RAG
Index/pre-retrieval/post-retrieval :
optimization

*

Naive RAG
Add relevant contextual
paragraphs

i

|
( Adding few shot case COT )

\
\

- - - -

|
I
v , ( Collaborative fine-tuning >

All of the ébove

< Generator fine-tuning )

o
>
@

_______
- -
-

! Fine-tuning

Promt Engineering

\C Prompt preliminary attempts)

Model Adaptation

Low

» Required
High

RAG makes sense when
you have a custom
knowledge base and want
a standard ChatGPT-like
interface on top of it. RAG
has multiple components
to it and can be tricky to
get right. However, it's
definitely easier to
implement than fine-
tuning.

Fine-tuning makes sense
when you have several
supervised examples of
request responses and are
looking for a particular
format for your responses.
Thatis if you want the
model to adaptto a
particular type of response.
For example, you can fine-
tune a model to be good at

a specific type of SQL code
generation.
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Knowledge Graphs (KGs)

Cons: Pros:
« Implicit Knowledge Structural Knowledge

Hallucination Accuracy
Indecisiveness ( \

Decisiveness
Black-box

Interpretability
Lacking Domain- Domain-specific Knowledge
specific/New Knowledge

Evolving Knowledge

Pros: Cons:

» General Knowledge * Incompleteness

« Language Processing » Lacking Language

+ Generalizability \ G Understanding
-~ + Unseen Facts

Large Language Models (LLMs)



Retrieved Graph Data

pasnpoujul

m,
ery
8eg B
2
o

transform

—_—

Graph Language

HH Adjacency/Edge Table

(Claude Monet, introduced, new
techniques)

(new techniques, emerged in, 19th
century)

(new techniques, revolutionized,
later art movements)

< graphml >

'<'/> Code-like Forms

Natural Language

Claude Monet introduced new
techniques. These new techniques
emerged in 19th century. These
new techniques revolutionized later
art movements.

< key id ="d0" for ="node" attr.name ="name" attr.type ="string" > </ key >
< key id ="d1" for ="edge" attrname ="name" attr.type ="string" > </ key > 0

< graph id ="G" edgedefault ="directed" >

<node id ="n0" > < data key ="d0" > Claude Monet </ data > </ node >
<node id ="n1" > < data key ="d0" > new techniques </ data > </ node >
< node id ="n2" > < data key ="d0" > 19th century </ data > </ node >

<node id ="n3" > < data key ="d0" > later art movements </ data > </ node > 1 2
< edge id ="e0" source ="n0" target ="n1" > < data key ="d1" > introduced </ data > </ edge >

< edge id ="e1" source ="n1" target ="n2" > < data key ="d1" > emerged in </ data > </ edge >
< edge id ="e2" source ="n1" target ="n3" > < data key ="d1" > revolutionized </ data > </ edge >

</ graph >
</ graphml >

Source : Paper : https://arxiv.org/pdf/2408.08921

% Node Sequence

Claude Monet— new techniques
— later art movements

Claude Monet— new techniques
— 19th century

;fi% Syntax Tree

Node feature:
0: Claude Monet
1: new techniques
2: 19th century
3: later art movements
traverse Edge feature:
_— (0,1): introduced
(0,2): emerged in
(0,3): revolutionized
Structure:

Tree Construction center node: 0

1st-hop: 1
2nd-hop: 2, 3


https://arxiv.org/pdf/2408.08921

ft.github.io/graphrag/
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https://microsoft.github.io/graphrag/

[ Source Documents J [ Global Answer J

text extraction query-focused
and chunking summarization
( Text Chunks J [ Community Answers J
domain-tailored query-focused
summarization summarization
[ Element Instances ] [ Community Summaries J
domain-tailored domain-tailored
summarization community summarization
detecti s
[ Element Summaries } e { Graph Communities J
( Indexing Time } Pipeline Stage { Query Time ]

Graph RAG pipeline using an LLM-derived graph index of source document text
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Pre-Generation
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Graph based Generation
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§ 7.1 Generators

* GNNs
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Graph based Retrieval

Input Query

§ 6.4.1 Query Enhancement
* Query Expansion

« Query Decomposition § 6.2 Retrieval Paradigm

» Multi-Stage Retrieval

§ 6.3 Retrieval « |terative Retrieval
* Once Retrieval

N4 Granularity § 6.4.2 Knowledge
=l . Nodes § 6.1 Retriever Enhancement
g - |:> ;”‘t’r']ets [> « Non-parametric Retriever |:>
amns . LM-Based Retri » Knowledge Merging
Graph . Subgraphs ase etriever

* Knowledge Pruning

Database * Hybrid GNN-Based Retriever



Direct LLM

Query

How did the artistic movements

of the 19th century impact the
development of modern art in
the 20th century?

LLMs

Response

The artistic movements of
the 19th century influenced
modem art in the 20th
century by encouraging
experimentation with color,
form, and subject matter.
These movements paved
the way for abstraction,
expressionism, and other

innovative. x

RAG

Query

How did the artistic movements
of the 19th century impact the
development of modern art in

the 20th century? Retriever

\

1. Impressionist artists like
Claude Monet introduced new
techniques that revolutionized
the depiction of light and color.
2. The Impressionist techniques

influenced later art movements.

LLMs <= 3. Pablo Picasso pioneered
Cubism, which radically
transformed the approach to
visual representation.

4. Cubism emerged in the early
20th century and challenged
traditional perspectives on art.

Retrieved Text

v Response

Impressionist artists like Claude Monet in the 19th
century introduced new techniques that influence
later art movements. Pablo Picasso pioneered
Cubism relativity in the early 20th century.

GraphRAG

Query

How did the artistic movements
of the 19th century impact the >
development of modern art in

the 20th century? Retriever

\

- (Claude Monet) - [introduced] -
(new techniques)
- (new techniques) —
[revolutionized] - (depiction of
light and color)
- (Impressionist techniques) -
LLMs <= [influenced] - (later art
movements)
- (Pablo Picasso) - [pioneered] >
(Cubism)
- (Cubism) - [emerged in] > (early
20th century)

% Retrieved Triplets

v Response

Monet introduced new techniques that revolutionized
the depiction of light and color. His Impressionist
techniques influenced later art movements, including
Picasso's Cubism, which emerged in the early 20th
century. This influence helped shape Picasso’s
innovative approach to fragmented perspectives.



GraphRAG

Input Query
How did the scientific contributions of the 17th century influence early 20th-century physics?

v
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Production Environment

Front End Application : React)S (Cross Platform)

I Rest AP| / Kafka Channel I Rest APl / Kafka
p Channel

Haystack Custom Application AP ] < >
l CE )

PostgresML

Hay Stack 2.0 ] =) (SQL / ML)
SQL

N\

K3S (Kubernetes)

Unovie TPU Hardware




Postgres is eating the database world

https://medium.com/@fengruoh
ang/postgres-is-eating-the-
database-world-157¢c204dcfc4

Unovie © 2024 Unovie Confidential
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Availble
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Composable

ours

Battery-Included, Local-First
PostgreSQL Distribution as an
Free & Better RDS Alternative

Unovie © 2024 Unovie Confidential

PostgreSQL In STYle

Battery-Included, Local-First
PostgreSQL Distribution as an
Open-Source RDS Alternative

=
Extensible Postgres

PG with 180+ powerful extensions ready for use
PostGIS, Timescale, Citus, Vector, AGE, PGML
ParadeDB, Hydra, DuckFDW, PG GraphQL,

Available Service

Deliver auto-routed, high-performance, pooled, reliable
and flexible database Services Access via Pgbouncer
DNSMasq,Keepalived, vip-manager, and HAProxy

Painless Experience

Easy to use: Download, Install, Configure in one command
Config Templates for different scenarios, auto-tuned params
Admin SOP and zero-downtime blue-green Migrations plans

Ge

& pigsty.io

8 Docs

Extensibility PATRONI# e
) A
@ - A% poBackRest Gratana
Timesccle  CITUS 5
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Ammio redis @ | PostgreSQL vrE 9 C E

4y supabase @ @ Manager
\ ANSIBLE
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¥ % A - o /
& 9 PG Bouncer /
—10 W Terraform Vagrant W e
Composability \ Availbility

Maintainability

@ Playground Demo ‘ Getting Started
[ Beial s o

-
JTTT

Reliable Infrastructures

Create self-healing HA PostgreSQL clusters
with pre-configured PITR, built-in ACL, & SSL
Secure your infra with local CA & best practice.

Maintainable Toolbox

Infra as Code, Declarative API & Idempotent Playbooks
Vagrant sandbox & Terraform laa$ provisioning specs
Local repo, offline package, setup without Internet access

Infra as Code

Compatible Distros
Run on base OS without containerization support
EL 7, 8, 9 and Rocky, Alma, CentOS, OracleLinux,...
Ubuntu 20.04 / 22.04, and Debian 11 /12 Support

& Blog O GitHub 8 English~  QSearch this site.

Extensible
ostgres

Reliable

nfras

o
1 4
o ;‘tl'm\;ice
€ coibox
v

Composable

ours

Observable Graphics

Unparalleled monitoring best practices build upon
the modern Prometheus & Grafana stack: Gallery
Reuse them to monitor existing DBs & cloud RDS

Playground Demo

R

Composable Modules

Modular design, flexible arch with many bonus features.
Redis, MinlO, ETCD, FerretDB, DuckDB, Supabase
Docker compose templates for software that use Postgres

Availble Modules

®

Open-Source RDS

Free software open-sourced under the AGPLv3 license
Better RDS cost-saving 50%-90% comparing to the Cloud
Multi-cloud deployment since day one. No vendor lock-in!

Feature Comparision
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Po StG resML Open-source Python Library for Training and Deploying ML
Models in PostgreSQL via SQL Queries

Benchmarks

Core use cases have been implemented and tested against alternatives

10x faster than OpenAl for embedding generation
(and more secure, reliable, scalable, cost efficient, with higher embedding quality)

e A4x faster than HuggingFace + Pinecone for RAG chatbot
e 10-20x faster than MindsDB (not really a DB, it's a microservice)

e 8-40x faster than Python + Redis for an XGBoost microservice

https://www.youtube.com/watch?v=kK3W2gpVa8E&t=3s. <<<<Watch This Video

https://medium.com/pythoneers/postgresml-open-source-python-library-for-training-

and-deploying-ml-models-in-postgresqgl-via-sql-6fea87081ab5

https://www.datacamp.com/tutorial/postgresml-tutorial-machine-learning-with-sql

https://www.infoq.com/presentations/ml-postgresml/



https://www.youtube.com/watch?v=kK3W2qpVa8E&t=3s
https://www.youtube.com/watch?v=kK3W2qpVa8E&t=3s
https://medium.com/pythoneers/postgresml-open-source-python-library-for-training-and-deploying-ml-models-in-postgresql-via-sql-6fea87081ab5
https://medium.com/pythoneers/postgresml-open-source-python-library-for-training-and-deploying-ml-models-in-postgresql-via-sql-6fea87081ab5
https://www.datacamp.com/tutorial/postgresml-tutorial-machine-learning-with-sql
https://www.infoq.com/presentations/ml-postgresml/

Database requirements for interactive application

The data layer ends up being the hard part of interactive ML & Al infrastructure

e Near real-time access, rules out data warehouses
High client concurrency, i.e. horizontal scalability, i.e. sharding
o Millisecond read times
Session level streaming update latency (seconds)

e Machine Learning features
o Key/Value access
Text, JSON, and vector indexes
ML models: classical, embeddings, LLMs

e Proven
o Documented deployments at scale
Mature open source communities
Multiple hosted vendors

Open-source Python Library for
PO StG res M L Training and Deploying ML Models in

PostgreSQL via SQL Queries



First Principles Applied to ML

Machine Learning models are the generalized algorithm that
recreate the data they are trained on, as closely as possible.

Useful models are:

1) Small relative to the data
2) Updated infrequently relative to the data

. Moving the algorithm to the data before inference is more
efficient than moving the data to the algorithm during inference.

Open-source Python Library for
PO StG res M L Training and Deploying ML Models in

PostgreSQL via SQL Queries



Transformers

Text Generation, Summarization, Translation, Embeddings and other “Al” stuff

pgml.transform() pgml.embed()

Download pre-trained models e Higher quality open source

from HuggingFace

Serve with the same Postgres
infrastructure

GPU acceleration provided by
libtorch/tensorflow.

GGML & GPTQ for model
quantization

PostGresML

embeddings than OpenAl

Faster end-to-end vector
database operations than OpenAl
+ Pinecone

HNSW and vector operations from
pgvector

pgml. tune()

Fine tune pre-trained models using
Reinforcement Learning from
Human Feedback (RLHF)

Same workflow as pgml.train()

LORA coming soon

Open-source Python Library for
Training and Deploying ML Models in
PostgreSQL via SQL Queries



VS NEW WAY

EMBEDDING MODEL |
NEAREST NEIGHBORS
|
P . J

y \ PROMPT CREATION
— | \ 6; }
\ 4

(auery) 4 T —— ﬂ ;> PostgresML

0
\

\ ‘

TEXT GENERATION

T TEXT GENERATION MODEL

PRUNING MODEL l
/ \
4

4Lx Faster 10x faster Save 42%

than @ HuggingFace + ¢33 Pinecone than @& OpenAl for embedding On vector database cost
for a RAG chatbot generation compared to ¢Z} Pinecone
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The average retrieval speed for RAG in seconds
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1 client

Throughput via network in reg/s (more is better)

10 clients 20 clients 20 clients

W PostgresML (EC2)

(pgbouncer)
Python (EC2)

chents(pg bouncer)



Korvus

Korvus is an all-in-one,
open-source RAG
(Retrieval-Augmented
Generation) pipeline
built for Postgres. It
combines LLMs, vector
memory, embedding
generation, reranking,
summarization and
custom modelsinto a
single query,
maximizing
performance and
simplifying your search
architecture.

Unovie © 2024 Unovie Confidential

om korvus import Collection, Pipeline, init_logger
om rich import print
port asyncio

init_logger()

collection = Collec n( "korvus-demo-vo")

pipeline = Pipeline("v1")

jef main():
query = "Is Korvus fast?"
print(f"Querying for response to: {query}")
results = await collection.rag(

"CONTEXT": {
"vector_search": {
"query": {
"fields": {"text": {"query": query}},
}

,

"document": {"keys": ["id"]},
TEamitte 1

}

’
"aggregate": {"join": "\n"},
’
fehatte
"model": "meta-1llama/Meta-Llama-3-8B-Instruct",
"messages": [

"role": "system",

"content": "You are a friendly and helpful chatbot",

b
{

Yrolefs fuser’:

"content": f"Given the context\n:{{CONTEXT}}\nAnswer the qu

L
1,
"max_tokens": 100,
b

}

pipeline,
print(results)

asyncio.run(main())

NOR  demo.py [+]

Tisel: 1981

~/Projects/test
> |




Korvus stands out by harnessing the full power of Postgres for RAG operations:

* Postgres-Native RAG: Korvus leverages Postgres' robust capabilities, allowing you to perform complex RAG
operations directly within your database. This approach eliminates the need for external services and API calls,
significantly reducing latency and complexity many times over.

* Single Query Efficiency: With Korvus, your entire RAG pipeline - from embedding generation to text generation -
is executed in a single SQL query. This "one query to rule them all" approach simplifies your architecture and
boosts performance.

* Scalability and Performance: By building on Postgres, Korvus inherits its excellent scalability and performance
characteristics. As your data grows, Korvus grows with it, maintaining high performance even with large datasets.

Key Features

 Simplified Architecture: Replace complex service oriented architectures with a single, powerful query.
* High Performance: Eliminates API calls and data movement for faster processing and greater reliability.
* Open Source: Improve your developer experience with open source software and models that run locally in
Docker too.
 Multi-Language Support: Use Korvus with Python, JavaScript and Rust. Open anissue to vote for other language
support.
* Unified Pipeline: Combine embedding generation, vector search, reranking, and text generation in one query.
* Postgres-Powered: Under the hood, Korvus operations are powered by efficient SQL queries on a time-tested
database platform.
<
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XGBoost
-
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XGBoost
S
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process
XGBoost
-

Scaling PostgresML to 1 Million

Requests per Second

Addressing horizontal scalability
concerns, we've benchmarked
PostgresML and ended up with an
incredible 1 million requests per second
using commodity hardware.

Unovie © 2024 Unovie Confidential

Average Throughput
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== pgbouncer
e pgCat
m— SUPaViSOT

0 500 1000 1500 2000
Number of Clients

2500

https://tembo.io/blog/postgres-connection-poolers

PgBouncer PgCat Supavisor

Max Concurrent Clients Tested 2500 2500 2500

Max Throughput 44,096 tps @ S0 clients 59,051 tps @ 1,250 clients 21,708 tps @ 100 clients

Latency @ 1,250 concurrent clients 472 ms 211ms 64.37 ms

https://postgresml.org/blog/scaling-postgresml-to-1-

million-requests-per-second



https://postgresml.org/blog/scaling-postgresml-to-1-million-requests-per-second
https://postgresml.org/blog/scaling-postgresml-to-1-million-requests-per-second

guidance

https://github.com/guidance-ai/guidance

Guidance is an efficient programming paradigm for steering language models.

Guidance is a proven open-source Python library for controlling outputs of any language model (LM).
With one API call, you can express (in Python) the precise programmatic constraint(s) that the model
must follow and generate the structured output in JSON, Python, HTML, SQL, or any structure that the
use case requires.

Guidance differs from conventional prompting techniques. It enforces constraints by steering the
model token by token in the inference layer, producing higher quality outputs and reducing cost and

latency by as much as 30-50% when utilizing for highly structured scenarios.

https://github.com/microsoft/Phi-3CookBook/blob/main/code/01.Introduce/guidance.ipynb

</
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https://github.com/microsoft/Phi-3CookBook/blob/main/code/01.Introduce/guidance.ipynb
https://github.com/guidance-ai/guidance

Large Models for Aerial Edges: An Edge-Cloud Model

Evolution and Communication Paradigm (paper : Aug 2024) Simulation Parameters
) Parameter Value
Edge (Ae I’Ia|) Cloud (G round) Number of sensing frames generated per second N 10
Number of pixels per frame = 107
% (( )) Average data size of the extracted feature F' 0.86kbps
— OTA bandwidth B 10 MHz
Over-the-air A Uplink spectrum efficiency Sy, 2.55 bit/s/Hz
B \ Communication : Downlink spectrum efficiency Sy 5 bit/s/Hz
e & . P Yo _. s . ! Maximum model update overhead M qx 230 kbps
'/ F.,..,W?s’?hw\\ ," Edge Computing .', Data N Minimum model update overhead M, ;n 23 Mbps
| - : ; i i Residual Ei Stream i
i i E Mapping : i % : 85
E i ! ¥ | Cloud Computing
: - i: Feature i !
| Do Feature p 1 Stream ! I ::.arge !
! i ; ; i nference
\ | Extraction | X | | 80 |
i ot / 3
| L Seam | =
| | ! £
| ] 75 +
"""""" —&— Edge-Cloud Model Evolution
. —#— Cloud Model Only
Mya@u? Edge Model Only
Output —— Exhaustive Search
70 : :

Total bandwidth B (MHz)

0 10 20 30 40

50

The performance gain of the proposed framework stems from dynamically adjusting the mAP of the edge model and the cloud model via model

evolution and data uploading, so as to maximize the overall mAP of the framework.

The edge model handles the majority of tasks with small communication bandwidth and large data size, where most of the bandwidth is allocated

to small model updating.

The cloud model handles the majority of tasks with large communication bandwidth and small data size, with most of the bandwidth allocated to

residual mapping data uploading. mAP : Mean Average Precision



https://arxiv.org/pdf/2408.04927

Google’s Project OAK

Data sent to Server.
Service decides on use

Now
Once personal data leaves your device,
you lose control of what happens to it.
Leaving you exposed to potential misuse

—

Data Stays within Enclave,
governed by hardware
enforced policy

#J

With Enclaves

Personal Data remain in Enclaves obeying
the rules that you control, resetting the
user: service value exchange.



The Fine-tuning
Leaderboard shows the
performance of each
model aggregated across
31 distinct tasks. You can
evaluate the performance
pre and post fine-tuning
by selecting the base or
fine-tuned model button
at the top. Remarkably,
most of the fine-tuned
open-source models
surpass GPT-4 with Llama-
3, Phi-3 and Zephyr
demonstrating the
strongest performance.

Unovie © 2024 Unovie Confidential

Developer

[\
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Model

llama-3-8b
phi-3-4k
zephyr-7b-beta
llama-3-8b-instruct
mistral-7b
mistral-7b-instruct
llama-2-7b-chat
lama-2-7b

phi-2

gpt-4
gemma-7b-instruct
gemma-2b
gemma-7b
gemma-2b-instruct

gpt-3.5-turbo

BASE MODELS FINE-TUNED MODELS

https://predibase.com/fine-tuning-index
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PEFT (parameter-efficient fine-tuning) is a method LoRA weights, W, and Wy, represent AW
for training large language models (LLMs) by

updating only a small number of parameters Forward pass with

during training. updated model

LoRA (Low-rank Adaptation) is a popular PEFT
technique that uses low-rank decomposition to

reduce the number of trainable parameters in o

LLMs. This reduction in parameters makes fine- weights

tuning more efficient and practical, with lower W

memory consumption and reduced N
computational and storage costs

LoRA's approach is to freeze the original weights and introduce new parameters into the model to train through. It
does this by decomposing weight matrices into two smaller matrices, which can be trained to adapt to new data

while keeping the overall number of changes low.

For example, a weight updation matrix of 200 x 3 and 3 x 500 can be decomposed into 2100 trainable parameters,
which is only 2.1% of the total number of parameters.

LoRA can also be applied to specific layers only, further reducing the number of parameters. As a result, the files can
be as small as 8MB, making it much easier and faster to load, apply, and transfer the learned models.

Unovie © 2024 Unovie Confidential



Smaller, Faster LLMs with Predibase + Gretel

% Predibase %
Fine-tune,

Synthetic evaluate and

Data deploy LLMs

oretel

Generate
high-quality
synthetic data

High-quality models
for your use case
at a fraction of the cost

From data through deployment

https://predibase.com/blog/how-to-create-an-sql-
copilot-by-fine-tuning-llms-with-synthetic-data

https://gretel.ai/videos/how-to-generate-synthetic-data-with-gretel

Unovie © 2024 Unovie Confidential



https://github.com/mlabonne/llm-datasets

High-quality datasets, tools, and concepts for LLM fine-tuning.

“£ Whatis a good dataset?
Data is the most valuable asset in LLM development. While datasets can't be directly evaluated like models,
high-quality datasets have the following characteristics:

 Accuracy: Samples should be factually correct, helpful to users, and well-written. Answers should also be
relevant to their corresponding instructions.

* Diversity: You want to cover as many use cases as possible to ensure proper instruction-following and
relevant answers. This requires a wide range of topics, contexts, lengths, writing styles, etc. sampled ina
representative way.

« Complexity: Answers should be nontrivial and a/ representative of tasks you expect the model to handle or b/
include complex tasks involving multi-step reasoning, planning, etc.

Measuring accuracy can be easy in the case of mathematical problems using a Python interpreter, or near-
impossible with open-ended, subjective questions. On the other hand, clustering datasets by topic is a good way
of measuring diversity. Finally, complexity can be assessed using other LLMs acting like judges.

<

Unovie © 2024 Unovie Confidential



EX Score

A Llama-3-8B model fine-tuned on a subset of the synthetic text-to-SQL data outperforms the base model by a wide margin on
the BIRD-SQL benchmark, delivering an overall lift of 167% and a lift of more than 467% on challenging questions.

Absolute EX Scores by Difficulty Level Lift in EX Scores by Difficulty Level

Model 467.8
' Base .

B Fine-Tuned

32.2

400 A

300 A

256.9

Lift in EX Score (%)

200 A

167.0

144.3

100 A

total simple moderate challenging total

simple moderate challenging
Difficulty Level

Difficulty Level
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LoRAX (LoRA eXchange) is a framework that allows users to serve thousands of
fine-tuned models on a single GPU, dramatically reducing the cost of serving
without compromising on throughput or latency.

«<# Dynamic Adapter Loading: include any fine-tuned LoRA adapter

from HuggingFace, Predibase, or any filesystem in your request, it will be loaded just-in-time
without blocking concurrent requests. Merge adapters per request to instantly create powerful
ensembles.

-'i’ Heterogeneous Continuous Batching: packs requests for different adapters together into
the same batch, keeping latency and throughput nearly constant with the number of
concurrent adapters.

- Adapter Exchange Scheduling: asynchronously prefetches and offloads adapters between
GPU and CPU memory, schedules request batching to optimize the aggregate throughput of
the system.

- 11 Optimized Inference: high throughput and low latency optimizations including tensor
parallelism, pre-compiled CUDA kernels (flash-attention, paged attention, SGMV), quantization,
token streaming.

«= Ready for Production prebuilt Docker images, Helm charts for Kubernetes, Prometheus
metrics, and distributed tracing with Open Telemetry. OpenAl compatible APl supporting multi-
turn chat conversations. Private adapters through per-request tenant isolation. Structured
Output (JSON mode).

*@ Free for Commercial Use: Apache 2.0 License. Enough said



https://loraexchange.ai/models/adapters.md
https://loraexchange.ai/models/adapters.md
https://loraexchange.ai/models/adapters.md
https://loraexchange.ai/guides/merging_adapters/
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2310.18547
https://loraexchange.ai/guides/structured_output/
https://loraexchange.ai/guides/structured_output/
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Serving a fine-tuned model with LoRAX consists of two components:

Base Model: pretrained large model shared across all adapters.
*Adapter: task-specific adapter weights dynamically loaded per
request.

LoRAX supports a number of Large Language Models as the base model
including Llama (including Codellama), Mistral (including Zephyr),
and Qwen. See Supported Architectures for a complete list of
supported base models.

Base models can be loaded in fp16 or quantized
with bitsandbytes, GPT-Q, or AWQ.

Supported adapters include LoRA adapters trained using
the PEFT and Ludwig libraries. Any of the linear layers in the model
can be adapted via LoRA and loaded in LoRAX.


https://loraexchange.ai/models/base_models/
https://loraexchange.ai/models/adapter.md
https://huggingface.co/meta-llama
https://huggingface.co/codellama
https://huggingface.co/mistralai
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
https://huggingface.co/Qwen
https://loraexchange.ai/models/base_models/
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2306.00978
https://github.com/huggingface/peft
https://ludwig.ai/

[ LoRAX | Dedicated M agpt-3.5-turbo

10

$ / million tokens
wn

1 2 B 8

#Fine-Tuned Models
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pip install lorax-client

from lorax import Client

client = Client("http://127.0.0.1:8080")

# Prompt the base LLM

prompt = "[INST] Natalia sold clips to 48 of her friends in April, and then she sold half as many clips
in May. How many clips did Natalia sell altogether in April and May? [/INST]"
print(client.generate(prompt, max_new_tokens=64).generated_text)

# Prompt a LoRA adapter

adapter_id = "vineetsharma/qlora-adapter-Mistral-7B-Instruct-v@.1-gsm8k"
print(client.generate(prompt, max_new_tokens=64, adapter_id=adapter_id).generated_text)

https://loraexchange.ai/

Unovie © 2024 Unovie Confidential



SGLang: LMSys New Framework for Super Fast LLM Inference

SGLang is a fast serving framework for large
language models and vision language models. It
makes your interaction with models faster and
more controllable by co-designing the backend
runtime and frontend language.

The core features include:

* Fast Backend Runtime: Efficient serving with
RadixAttention for prefix caching, jump-forward
constrained decoding, continuous batching,
token attention (paged attention), tensor
parallelism, flashinfer kernels, and quantization
(AWQ/FP8/GPTQ/Marlin).

* Flexible Frontend Language: Enables easy
programming of LLM applications with chained
generation calls, advanced prompting, control
flow, multiple modalities, parallelism, and
external interactions.

Unovie © 2024 Unovie Confidential

SGLang tackles a set of known challenges in LLM applications with a fresh approach.
When we think about the elements There are several areas where LLM programming
can be improved:

Caching: In LLM programs, caching the computed KV cache from previous tokens
can minimize repeated calculations when multiple text segments and generation
calls are involved.

Batching: Since LLMs are primarily memory-bound, increasing batch sizes can
significantly boost throughput. Employing contiguous batching techniques is also
beneficial.

Sharing: LLM programs often need to generate multiple outputs from a single
prompt or branch out to a new prompt. Developing more sophisticated sharing
patterns can enhance efficiency.

Parallelism: By creating a dependency graph for generation calls within an LLM
program, independent calls can be executed simultaneously, enhancing
parallelism within the program.

Compilation: Full programs can be compiled into an optimized intermediate
representation for more efficient execution. Aggressive optimizations, such as
adjusting prompts based on test cases, can further enhance performance.



Achieving Faster Open-
Source Llama3 Serving with
SGLang Runtime (vs.
TensorRT-LLM, vLLM)

The SGLang Team, Jul 25, 2024

Performance

Usability
Customizability

Source Code Availability

Programming Language

Llama-70B (fp8) on 8 x H100. Lower Latency is Better.
= yLLM == TensorRT-LLM == SGLang

125

n

— 100

=

5 75

3 50

c

T 25

3

= 0

0 2 4 6 8 10 12 14 16
Requests Per Second

SGLang TensorRT-LLM VvLLM
Excellent Excellent Fair
Good Poor Good
High Low Medium
Fully Open Partially Open Fully Open
Python C++ Python

https://aflah02.substack.com/p/how-sglang-saved-me-days-of-time
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Tensor Parallelism AVAVAY
* Add --tp 2to enable tensor parallelism. If it

indicates peer access is not supported between
these two devices, add --enable-p2p-
check option.

* python-m sglang.launch_server --model-path
meta-llama/Meta-Llama-3-8B-Instruct --port
30000 --tp 2

% GPU 1 !* : {

m * ~ IS  Add --dp 2 to enable data parallelism. It can also
be used together with tp. Data parallelism is better
for throughput if there is enough memory.

GPU 2

*
Il

Input Weight Output

* python-m sglang.launch_server --model-path
meta-llama/Meta-Llama-3-8B-Instruct --port
30000 --dp 2 --tp 2

Documentation : https://huggingface.co/docs/transformers/v4.15.0/en/parallelism

SGLANG : https://github.com/sgl-project/sglang/tree/main?tab=readme-ov-file#supported-models
<
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@ DEEPSPEED CHAT

Fast Training with Affordable Cost

Time to Train (hours)

13B I 1.25hrs

o®

Cost of Training on Azure ($)

Train 15X Faster and Scale to 5x Bigger Models
than SOTA RLHFs

Normalized Throughput

15
12
15X
0 I

DS-Chat SoTA

o

(=)]

w

Normalized Model Size

I | .
0 T

DS-Chat SoTA

()]

H

N

Easy-Breezy Training

A complete end-to-end RLHF
training experience with a
single click

High Performance System

Hybrid Engine achieves 15X
training speedup over SOTA
RLHF systems with
unprecedented cost reduction
at all scales

Accessible Large Model
Support

Training ChatGPT-Style models
with tens to hundreds of
billions parameters on a single
or multi-GPUs through ZeRO
and LoRA

A Universal Acceleration
Backend for RLHF

Support InstructGPT pipeline
and large-model finetuning for
various models and scenarios
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https://www.deepspeed.ai/




DeepSpeed MIl

MIl Backend
Non-persistent deployment Frontend

Model Provider
(e.g., Hugging

_ Continuous
Persistent deployment batching

mii.pipeline(model_name)

mii.serve(model_name) .
mii.client(model_name) Dynamic

SplitFuse

query
Perston

response GRPC Server

Model Pipeline

DeepSpeed Inference

High Performance
CUDA Kernels

Blocked KV-Cache

Tensor Parallelism

DeepSpeed-FastGen
Optimizations

Existing Components

DeepSpeed User-Facing

Components

External Software

User Input

Output

P https://github.com/DefTruth/Awesome-LLM-Inference
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Scale

Speed

e 100B parameter e Up to 5X faster

e 10X bigger

Cost Usability

e Up to 5X cheaper e Minimal code change

i "I

System Throughput SpeedUp

l I
0
1.58
Low-BW

& Megatron-LM = DeepSpeed

Speed up of

DeepSpeed

over Megatron
208 408 808

High-BW interconnect

Model Size

The largest model size (# of parameters) can
be trained without model parallelism

Without ZeRO - 1.3B

DeepSpeed
empowers
ChatGPT-like model
training with a
single click, offering
15x speedup over
SOTA RLHF systems
with unprecedented
cost reduction at all
scales

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-
enable-training-models-with-over-100-billion-parameters/
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Scenario 1: Long prompt, short output

VLLM'’s Future: A True Community Project

Scenario 2: All other cases

10.03

N
o
1

Throughput (reqs/s)
=
w

prompt_len=2600
output_len=60
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3.7

prompt_len=2600
output_len=128

101
. VLM

" DeepSpeed —

Throughput (reqs/s)

prompt_len=2600
output_len=200

prompt_len=500
output_len=150

prompt_len=500
output_len=500

Coming out of UC Berkeley Sky Computing Lab, we are building

VLLM truly in open source with the Apache 2.0 license.

prompt_len=500
output_len=1024



Chips per pod
Chip Bf16 TFLOPs
Chip Int8 TOPs

HBM (GB)
HBM BW (GBI/s)
ICI BW per chip (Gbl/s)

N/A

32
1228

2,400

LPDDR4/LPDDR4x

PCle EP & RC PCle Gen3
Eth 10/100/1000 x2 Ethemnet
NOR Flash NOR Flash

EMMC EMMC 4.5/5.1

SD card / SDIO SD/SDIO 3.0

Video Post
Processor
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Cropping
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Video Codec

MJPEG Codec
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The emerging Utility network uses the
BM1684x TPU chip from Sophon, suitable for
various Al applications. It excels in natural
language processing, facial recognition,
image generation, video structuring, and
audio recognition, focusing on Al inference
for cloud and edge with high computational
performance.

The BM1684x chip, featuring 64 NPUs with a
total of 1024 Execution Units, supports
mainstream machine learning frameworks
like PyTorch, ONNX, and TensorFlow,

emphasizing high performance and energy
efficiency.

Source link



https://medium.com/@utilitynet_community/google-geminis-tpu-chip-and-utility-s-tpu-chip-31411a49523c

